Lecture 11. Two-sample Comparison (II): Nonparametric method

兩個母群體中位數之比較: 無母數之方法

Nonparametric method

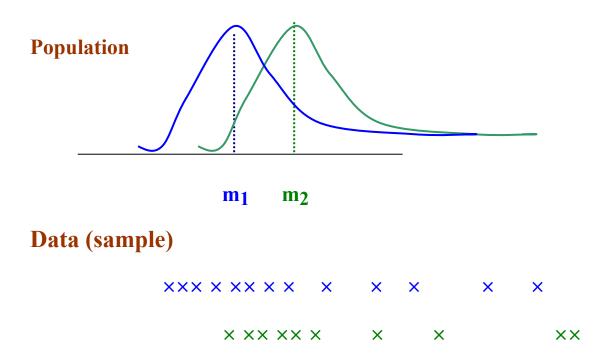
非參數化之方法;無母數之方法

對應前述之參數化方法:t-test, paired t-test (assuming

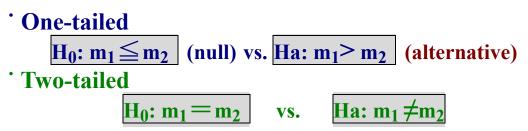
normal distribution(s)

When the underlying distributions are very similar, but both are far from normal (Gaussian) [e.g., right-skewed],

nonparametric methods can be applied.



One-tailed and Two-tailed test



Note: comparison between parametric and nonparametric methods for two-sample problem.

Fic. 4. Frank Wilcoson.	Independent samples	Paired samples	
parametric	T test	Paired t-test	
nonparametric	Wilcoxon	Wilcoxon	
	rank sum test	signed rank test	

Procedure :

- To construct the test statistic:
- Sampling distribution of the test statistic under Ho
- Significance level (1-α)
- **•** Type I error (α) and the p-value

Independent samples

	0	tr	•
	2	LŻ	1.
101011			

表13.3 兩組患有苯酮尿症樣本孩童的標準智商年齡 分數 (nMA)

低暴露濃度組 (<10.0 mg/dl)		高暴露濃度組 (<10.0 mg/dl)		
nMA(個月)	等級	nMA(個月)	等級	
34.5	2.0	28.0	1.0	
37.5	6.0	35.0	3.0	
39.5	7.0	37.0	4.5	
40.0	8.0	37.0	4.5	
45.5	11.5	43.5	9.0	
47.0	14.5	44.0	10.0	
47.0	14.5	45.5	11.5	
47.5	16.0	46.0	13.0	
48.7	19.5	48.0	17.0	
49.0	21.0	48.3	18.0	
51.0	23.0	48.7	19.5	
51.0	23.0	51.0	23.0	
52.0	25.5	52.0	25.5	
53.0	28.0	53.0	28.0	
54.0	31.5	53.0	28.0	
54.0	31.5	54.0	31.5	
55.0	34.5	54.0	31.5	
56.5	36.0	55.0	34.5	
57.0	37.0	25 30 3	313.0	
58.5	38.5	1 I Tel Martines	a stability	
58.5	38.5			
Mark Alexandre	467.0	1 14 本的正常教育	NO THE SE	

- $X_1, X_2, ..., X_n$; $Y_1, Y_2, ..., Y_m$
- Pooled sample: $Z_1 < Z_2 < Z_3 < Z_4 < ... < Z_{n+m}$
- Rank: 1,2,3,4,...,(n+m)

(Wilcoxon's) rank sum test:

If the smaller rank sum (of X-group or Y-group)=W, and the sample size of the corresponding group is n_s (the other is n_L). If n_s =n, then n_L =m; if n_s =m, then n_L =n.

Under null (H₀)

 $E(W) = [(n_S + n_L) \times (n_S + n_L + 1)/2] \times [n_S/(n_S + n_L)]$

 $=n_{S}\times(n_{S}+n_{L}+1)/2$;

 $Var(W)=n_{s}n_{L}(n_{s}+n_{L}+1)/12$ (Proof: see Appendix11.1)

SE(W)= $\sqrt{[n_Sn_L(n_S+n_L+1)/12]}$ (SE=standard error)

Approximate Z-score:

[W-E(W)]÷SE(W)~N(0,1), approximately, when n and m are

both large.

Example: (Ref. to Table 13.3) W=313 E(W)=18×(18+21+1) \div 2=360 Var(W)=18×21×(18+21+1) \div 12=1260 SE(W)= $\sqrt{(1260)}$ =35.5 Z_W=(313-360) \div 35.5=-1.32; P value=2×0.093=0.186

Paired samples

Data: Table 13.2

虚由	FVC 減少量 (ml)		-M-10*	80c 610	John Dukt JL, John (etc.)	
病患	安慰劑	利尿劑	差距	等級	符號化等級	
1	224	213	11	1	2.4 - 199	al and
2	80	95	-15	2	est person	-2
3	75	33	42	3	3	同社大會
4	541	440	101	4	4	
5	74	-32	106	5	5	A MARKET
6	85	-28	113	6	6	
7	293	445	-152	7	norm	-7
8	-23	-178	155	8	8	
9	525	367	158	9	9	
10	-38	140	-178	10	and a second	-10
11	508	323	185	11	11	1.4
12	255	10	245	12	12	编出公司
13	525	65	460	13	13	
14	1023	343	680	14	14	- 24
國立國	7 前台建筑		TRA DE SEGA		$\frac{14}{86}$	-19

表 13.2 囊腫纖維病變患者樣本的強迫性肺活量(FVC)減少的情形

$X_1, X_2, ..., X_n$;

Y₁,**Y**₂,...,**Y**_n

Difference: d_1, d_2, \dots, d_n ; $d_i = X_i - Y_i$

Rank r_1, r_2, \ldots, r_n (for $|d_i|$)

Sign ++--...+ (+: for d_i positive;

-: for d_i negative)

(Wilcoxon's) signed rank test

If the smaller |rank sum|=T, (absolute value of rank sum) Under null (H₀) \implies E(T)=[n(n+1)/2]÷2=n(n+1)/4; Var(T)=n(n+1)(2n+1)/24 (Homework) (Proof: see below*) SE(T)= $\sqrt{[n(n+1)(2n+1)/24]}$ (SE=standard error) Approximate Z-score: [T-E(T)]÷SE(T)~N(0,1), approximately, when n is large.

Example: (Table 13.2) T=19 E(T)=14×15÷4=52.5 Var(T)=14×15×29÷24=253.75 SE(T)=15.93 Z_T =(19-52.5)÷15.93=-2.10; P value=2×0.018=0.036

Proof(\bigstar): Let W= ΣU_i , where U_i=0 (with probability=1/2), and= r_i (with

probability=1/2). It is then interesting to note that: the W defined in this way have the same distribution with the statistic T. Also, {Ui} are independent of each other because the outcome of Ui is independent of that of Uj for $i\neq j$. So,

 $E(W) = \Sigma(EU_i) = \Sigma(0+i/2) = (1/2)\Sigma_i i = (1/2)(n(n+1)/2) = n(n+1)/4;$ $Var(W) = \Sigma(VarUi) = \Sigma(EU_i^2 - (EU_i)^2) = \Sigma(i^2/2 - (i/2)^2) = \Sigma(i^2/4)$ $= (1/4)(n(n+1)/(2n+1)/6) \quad OED$

SAS code

```
data twospl;
 input dlco group $ 00;
 cards;
 7.51
       emp 10.81 emp 11.75
                                emp 12.59
                                             emp
 13.47 emp 14.18 emp 15.25 emp 17.40 emp
 17.75 emp 19.13 emp 20.93 emp 25.73 emp
 26.16 emp
 6.19 no_emp 12.11 no_emp 14.12 no_emp
 15.50 no_emp 15.52 no_emp 16.56 no_emp
 17.06 no emp 19.59 no emp 20.21 no emp
 20.35 no emp 21.05 no emp 21.41 no emp
 23.39 no_emp 23.60 no_emp 24.05 no_emp
25.59 no_emp 25.79 no_emp 26.29 no_emp
 29.60 no_emp 30.88 no_emp 31.42 no_emp
 32.66 no_emp 36.16 no_emp
 ;
proc univariate plot normal data=twospl;
 var dlco;
 by group;
 run;
proc npar1way Wilcoxon;
 class group;
 var dlco;
 /* exact Wilcoxon; */ /* Time consuming for non-sparse data*/
```

run;

output

	Wilcox	on Scores (Rank Classified by			
group	N		Expected Under H0	Std Dev Under H0	Mean Score
emp no_emp	13 23	168.0 498.0	240.50 425.50	30.363081 30.363081	12.923077 21.652174
		Wilcoxon Tw	o-Sample T	est	
	S	Statistic (S)		168.0000	
	Ź	lormal Approximat) ne-Sided Pr < Z wo-Sided Pr > Z		-2.3713 0.0089 0.0177	
	C	Approximation Dne-Sided Pr < 2 Wo-Sided Pr > 2		0.0117 0.0234	
	Ō	ixact Test Dne-Sided Pr <= Two-Sided Pr >=		0.0081 0.0162	
	Z ir	icludes a continu	ity correc	tion of 0.5.	
		Kruskal-	Wallis Tes	:t	
		Chi-Square DF Pr > Chi-Sc		7014 1 0170	

Appendix 11.1 (★)

Variance of the Wilcoxon rank sum statistic

Let $\mathbf{g} = (\mathbf{r}_1, \dots, \mathbf{r}_{n_S}, \mathbf{q}_1, \dots, \mathbf{q}_{n_L})^T$, where \mathbf{a}^T denotes the *transpose* of matrix \mathbf{a} ; $N = n_S + n_L$, and

$$W = \mathbf{r}_1 + \ldots + \mathbf{r}_{n_S}$$

The main quantity we want to calculate is

$$VAR(W) = E(W^2) - (EW)^2.$$

It is easy to deduce that $E(W) = n_S(N+1)/2$ according to the 'uniformly distributed' principle (UDP) [explained in the class, not a generally used terminology in Statistics!]. The term remained to be calculated is $E(W^2) = E(\sum_{i=1}^{n_S} \mathbf{r}_i^2 + 2\sum_{i < j} \mathbf{r}_i \mathbf{r}_j)$. To this end, consider the cross-product matrix gg^T

$$\mathbf{g}\mathbf{g}^T \equiv (g_{ij}) = \left(egin{array}{cc} \mathcal{G}_1 & \mathcal{G}_2 \\ \mathcal{G}_3 & \mathcal{G}_4 \end{array}
ight),$$

where $\mathcal{G}_1 = (\mathbf{r}_i \mathbf{r}_j)$, $\mathcal{G}_2 = (\mathbf{r}_i \mathbf{q}_j)$ $\mathcal{G}_3 = \mathcal{G}_2^T$, and $\mathcal{G}_4 = (\mathbf{q}_i \mathbf{q}_j)$. Note that the sum of all elements in \mathbf{gg}^T is

$$\sum_{i,j} g_{ij} = (1 + \ldots + N)^2 = \frac{N^2 (N+1)^2}{4} = \sum_{i,j} \mathcal{G}_{1,ij} + \sum_{i,j} \mathcal{G}_{2,ij} + \sum_{i,j} \mathcal{G}_{3,ij} + \sum_{i,j} \mathcal{G}_{4,ij}$$

because the element of **g** is only a *re-alignment* of $(1, 2..., N)^T$. Further, $\sum_{i,j} \mathcal{G}_{1,ij} = \mathbb{E}(W^2)$. The diagonal part of \mathbf{gg}^T has the sum $1^2 + ... + N^2$; so under H_0 and according to the **UDP**, the sum of diagonal part of G_1 has the expectation:

$$E(\sum_{i=1}^{n_S} \mathbf{r}_i^2) = \{\frac{1}{6}N(N+1)(2N+1)\} \times \frac{n_S}{N}.$$
(1)

There remains $N^2 - N$ and $n_S^2 - n_S$ off-diagonal terms in \mathbf{gg}^T and \mathcal{G}_1 , respectively. By excluding the squared terms, the gg^{T} -matrix has a sum of the cross-product terms as

$$\sum_{i \neq j} g_{ij} = (1 + \ldots + N)^2 - (1^2 + \ldots + N^2) = \frac{N^2 (N+1)^2}{4} - \frac{1}{6} N(N+1)(2N+1).$$

So by a similar argument with **UDP**, the expectation (under H_0) of the sum of off-diagonal terms in G_1 is

$$2\mathrm{E}(\sum_{i< j}\mathbf{r}_i\mathbf{r}_j) = \left\{\frac{N^2(N+1)^2}{4} - \frac{1}{6}N(N+1)(2N+1)\right\} \times \frac{n_S(n_S-1)}{N(N-1)}.$$
(2)

The variance of W is then easily calculated as

VAR(W) = (1) + (2) -
$$\left(\frac{n_S(N+1)}{2}\right)^2 = \dots = \frac{n_S n_L(N+1)}{12}$$